SONG LIST RECOMMENDATION FOR STUDENT ACTIVITIES USING K-NEAREST NEIGHBORS (K-NN) METHOD
Keywords:
Music Recommendation, K-Nearest Neighbors, Study Concentration, Spotify API, Energy and ValenceAbstract
Music plays an important role in influencing an individual's mood, concentration and productivity. However, choosing the right music for learning activities is still a challenge, as each individual has different music preferences and the right music can have a positive impact on learning focus and motivation. Based on this problem, this research aims to develop an individual preference-based music recommendation system that can help users choose music that suits their learning needs. The solution offered is the implementation of a recommendation system using the K-Nearest Neighbor (K-NN) algorithm, which combines user profile data (such as age, gender, and hobbies) with music characteristics (such as energy and valence) to determine the most suitable song. The research data was collected through surveys and Spotify API to obtain song parameters. The analysis process uses K-NN to calculate the congruence between user profiles and song data in the dataset, with the aim of recommending suitable music. The results show that the system is effective in supporting concentration and study motivation, providing suitable song recommendations based on user preferences and needs.
References
Anggoro, Muhamad Veri, and Millati Izzatillah. 2022. “Sistem Rekomendasi Musik Dengan Metode Collaborative Filtering Berbasis Android.” STRING (Satuan Tulisan Riset Dan Inovasi Teknologi) 7 (1): 1. https://doi.org/10.30998/string.v7i1.10300.
Avandra, Ricky, Farida Mayar, and Desyandri. 2023. “PENGARUH MUSIK TERHADAP MOTIVASI BELAJAR Dan EMOSIONAL SISWA DALAM PEMBELAJARAN DI SEKOLAH DASAR.” Didaktik : Jurnal Ilmiah PGSD STKIP Subang 9 (2): 2620–29. https://doi.org/10.36989/didaktik.v9i2.997.
DANI, ANDREA TRI RIAN, VITA RATNASARI, LUDIA NI’MATUZZAHROH, IGAR CALVERIA AVIANTHOLIB, RADITYA NOVIDIANTO, and NARITA YURI ADRIANINGSIH. 2022. “Analisis Klasifikasi Artist Music Menggunakan Model Regresi Logistik Biner Dan Analisis Diskriminan.” Jambura Journal of Probability and Statistics 3 (1): 1–10. https://doi.org/10.34312/jjps.v3i1.13708.
Fadlila Surenggana, Fuad, Arik Aranta, and Fitri Bimantoro. 2023. “KLASIFIKASI MOOD MUSIK MENGGUNAKAN K-NEAREST NEIGHBOR DENGAN MEL FREQUENCY CEPSTRAL COEFFICIENTS (Mood Music Classification Using K-Nearest Neighbor with Mel Frequency Cepstral Coefficients).” Jurnal Teknologi Informasi, Komputer Dan Aplikasinya (JTIKA) 4 (2): 263–76. http://jtika.if.unram.ac.id/index.php/JTIKA/.
Giri, Gst Ayu Vida Mastrika, Made Leo Radhitya, Made Agung Raharja, and I Wayan Supriana. 2022. “SISTEM REKOMENDASI MUSIK BERDASARKAN DATA KONTEKS PADA LISTENING HISTORY MUSIK DAN KETERKAITAN ARTIS INDONESIA.” Jurnal RESISTOR (Rekayasa Sistem Komputer) 5 (1). https://doi.org/10.31598/jurnalresistor.v5i1.1044.
Helmholz, Patrick, Michael Meyer, and Susanne Robra-Bissantz. 2020. “Feel the Moosic: Emotion-Based Music Selection and Recommendation.” In 32nd Bled EConference Humanizing Technology for a Sustainable Society, BLED 2019 - Conference Proceedings. https://doi.org/10.18690/978-961-286-280-0.11.
Josua, Leonardo, Dyah Erny Herwindiati, and Tri Sutrisno. 2021. “Klasifikasi Profesi Berdasarkan Hobi Dengan Metode Minimum Spanning Tree.” Jurnal Ilmu Komputer Dan Sistem Informasi 9 (1): 153. https://doi.org/10.24912/jiksi.v9i1.11587.
Lestari, Melati Ayuning, Putra Pandu Adikara, and Sigit Adinugroho. 2019. “Rekomendasi Lagu Berdasarkan Lirik Dan Genre Lagu Menggunakan Metode Word Embedding (Word2Vec).” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer 3 (8): 2548–2964. http://j-ptiik.ub.ac.id.
Situmorang, Jesika Silviana, Putra Pandu Adikara, and Dian Eka Ratnawati. 2021. “Rekomendasi Lagu Berdasarkan Lirik Lagu Menggunakan Metode N-Gram Dan Cosine Similarity.” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer 5 (6): 2279–88. http://j-ptiik.ub.ac.id.
Wahidin, A. J., Prambodo, Y. L., & Asruddin, A. (2024). Multi Criteria Decision Making Approach in Determining the Best Online Streaming Platform for Alpha Generation. Jurnal Galaksi, 1(2), 121–131. https://doi.org/10.70103/galaksi.v1i2.22
Wagner, Petra, Barbara Schober, and Christiane Spiel. 2008. “Time Students Spend Working at Home for School.” Learning and Instruction 18 (4). https://doi.org/10.1016/j.learninstruc.2007.03.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I Made Aan Nugraha, I Gede Iwan Sudipa, Ni Putu Suci Meinarni, Made Leo Radhitya, Ketut Jaya Atmaja

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.