SENTIMENT ANALYSIS OF PUBLIC OPINION ON THE IMPACT OF DEEPFAKE TECHNOLOGY USING THE NAIVE BAYES METHOD ON PLATFORM X

Authors

  • Luh Deck Vera Anggreni Institut Bisnis dan Teknologi Indonesia
  • I Gusti Ayu Agung Mas Aristamy Institut Bisnis dan Teknologi Indonesia
  • Ketut Laksmi Maswari Institut Bisnis dan Teknologi Indonesia
  • Made Leo Radhitya Institut Bisnis dan Teknologi Indonesia
  • I Putu Agus Eka Darma Udayana Institut Bisnis dan Teknologi Indonesia

Keywords:

Deepfake, Sentiment Analysis, Naive Bayes, X(Twitter), Artificial Intelligence

Abstract

The development of deepfake technology, a digital manipulation tool powered by artificial intelligence, has posed significant challenges in the modern era, particularly concerning individual privacy and reputation. This technology enables the creation of highly realistic visual content, making it vulnerable to misuse, as seen in the case of Taylor Swift, who faced the unauthorized dissemination of fake explicit content on the social media platform X (Twitter). This study aims to analyze public sentiment regarding the incident using the Naive Bayes method, chosen for its reliability in text classification, low complexity, and accuracy. The research process includes data crawling, preprocessing (cleansing, case folding, tokenizing, stopword removal, and stemming), sentiment labeling with the Vader Lexicon, and TF-IDF weighting to build the classification model. The results indicate that the Naive Bayes model achieved an accuracy of 76%, precision of 79%, recall of 73%, and an F1-score of 75%. It also revealed that the majority of public sentiment was negative (60.88%), while positive sentiment accounted for 30.12%, reflecting widespread concern over the potential misuse of deepfake technology. This study offers valuable insights into public perception and provides a foundation for developing policies to mitigate the risks associated with deepfake misuse.

References

Alexander, S. G., Ananto, A. T., dkk. 2023. "Analisis Sentimen Opini Masyarakat Indonesia Terhadap Konten Deepfake Tokoh Publik". KAKIFIKOM (Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer), 05(02), 95–102.

Ariqoh, S., Sunandar, M. A., dkk. 2023. "Analisis Sentimen Pada Produk Cushion Di Website Female Daily Menggunakan Metode Support Vector Machine (Svm)". STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 2(3), 137–142. https://doi.org/10.55123/storage.v2i3.2345.

Fauziah, N., Alkautsar, M., dkk. 2024. "Pelabelan VADER Dalam Menganalisis Persepsi Masyarakat Terhadap Kenaikan Tarif PPN di Indonesia", 12(2), 228–238.

Krisdiyanto, T. 2021. "Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers". Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 7(1), 32. https://doi.org/10.24014/coreit.v7i1.12945.

Mahira, S. A., Sukoco, I., dkk. 2023. "Teknologi Artificial Intelligence Dalam Analisis Sentimen: Studi Literatur Pada Perusahaan Kata.Ai". Responsive, 6(2), 139–148.

Muhammad Daffa Al Fahreza, Ardytha Luthfiarta, dkk. 2024. "Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z". Journal of Applied Computer Science and Technology, 5(1), 16–25. https://doi.org/10.52158/jacost.v5i1.715.

Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, dkk. 2024. "Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM". Modem : Jurnal Informatika dan Sains Teknologi., 2(3), 62–76. https://doi.org/10.62951/modem.v2i3.112.

Ningsih, W., Alfianda, B., dkk. 2024. "Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia". MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 556–562. https://doi.org/10.57152/malcom.v4i2.1253.

Novera, O., dan Z, Y. F. 2024. "Analisis Pengaturan Hukum Pidana terhadap Penyalahgunaan Teknologi Manipulasi Gambar ( Deepfake ) dalam Penyebaran Konten Pornografi Melalui Akun Media Sosial", 10(2), 460–474.

Permana Putra, A., dan Farrah Syafira, A. 2023. "Analisis Sentimen Data Twitter Topik Politik Dengan Metode Naive Bayes Dan Convolutional Neural Networks (Cnn)". Jurnal Ilmiah Wahana Pendidikan, 9(20), 36–41.

Pratmanto, D., Widodo, A. E., dkk. 2024. "Analisa Sentimen Persepsi Masyarakat Terhadap Aplikasi Bea Cukai Mobile Menggunakan Algoritma Naive Bayes Dan K-Nearest", 12(2), 92–100.

Putra, S. A., dan Wijaya, A. 2023. "Analisis Sentimen Artificial Intelligence (Ai) Pada Media Sosial Twitter Menggunakan Metode Lexicon Based". JuSiTik : Jurnal Sistem dan Teknologi Informasi Komunikasi, 7(1), 21–28. https://doi.org/10.32524/jusitik.v7i1.1042.

Ramadhan, Z., Handiki, Y. R. P., dkk. 2024. "Batasan Etis Penggunaan Deepfake: Analisis Perspektif Etika Misbah Yazdi". International Conference on Tradition and Religious Studies, (Agustus), 44–53.

Ramadhani, T., Hermawan, P., dkk. 2024. "Penerapan Metode Naïve Bayes untuk Analisis Sentimen pada Ulasan Pengguna Aplikasi ChatGPT di Google Play Store". Technology and Science (BITS), 6(1), 430–439. https://doi.org/10.47065/bits.v6i1.5400.

Ridwan, M., Hariyanto, R., dkk. 2024. "Sentimen Analisis Rumah Makan Rawon Sakinah Dengan Metode Naïve Bayes Classifier", 1(3), 102–109.

Riskiyah, A., Fahrudin, T. M., dkk. 2024. "ONLINE GOJEK MENGGUNAKAN ALGORITMA EXTREME", 5(2), 1273–1285.

Santoso, H., Armansyah, A., dkk. 2022. "Analisis Sentimen Mahasiswa Terkait Pembelajaran Tatap Muka Menggunakan Metode Naive Bayes Classifier". Techno.Com, 21(3), 644–654. https://doi.org/10.33633/tc.v21i3.6262.

Santoso, M. I., dan Dzikrillah, A. R. 2024. "Analisis Sentimen Pengguna Terhadap Kinerja Sistem Transportasi Umum Jakarta Menggunakan Algoritma Naive Bayes". KLIK: Kajian Ilmiah Informatika dan Komputer, 4(6), 3032–3043. https://doi.org/10.30865/klik.v4i6.1936.

Saputra, R. A., Ray, D. P., dkk. 2024. "Analisis Sentimen Aplikasi Tokocrypto Berdasarkan Ulasan Pada Google Play Store Menggunakan Metode Naïve Bayes". KLIK: Kajian Ilmiah Informatika dan Komputer, 4(4), 2028–2036. https://doi.org/10.30865/klik.v4i4.1707.

Sholekhah, F., Putri, A. D., dkk. 2024. "Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom". MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 507–514. https://doi.org/10.57152/malcom.v4i2.1249.

Situmeang, B. S., Silitonga, I. Y., dkk. 2024. "Pengaruh Artificial Intelligence Terhadap Tingkat Kasus Deep Fake Pada Selebritas di Twitter". Device, 14(1), 80–91. https://doi.org/10.32699/device.v14i1.6984.

Syafrizal, S., Afdal, M., dkk. 2023. "Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor". MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 10–19. https://doi.org/10.57152/malcom.v4i1.983.

Syarifuddinn, M. 2020. "Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn". INTI Nusa Mandiri, 15(1), 23–28. https://doi.org/10.33480/inti.v15i1.1347.

Downloads

Published

2024-12-28

How to Cite

Vera Anggreni, L. D., Mas Aristamy, I. G. A. A., Maswari, K. L., Radhitya, M. L., & Eka Darma Udayana, I. P. A. (2024). SENTIMENT ANALYSIS OF PUBLIC OPINION ON THE IMPACT OF DEEPFAKE TECHNOLOGY USING THE NAIVE BAYES METHOD ON PLATFORM X. Proceeding International Conference on Information Technology, Multimedia, Architecture, Design, and E-Business, 3, 174–183. Retrieved from https://eprosiding.idbbali.ac.id/index.php/imade/article/view/873