SENTIMENT ANALYSIS OF THE LEADERSHIP OF THE PRESIDENT OF THE REPUBLIC OF INDONESIA USING THE SUPPORT VECTOR MACHINE METHOD
Keywords:
Analysis Sentiment, Support Vector Machine, President of the Republic of Indonesia, Leadership SentimentAbstract
Sentiment analysis has become one of the most widely used methods to understand public opinion on various issues, including the leadership of the President of the Republic of Indonesia. The data for this study were obtained from YouTube and X platforms through data crawling techniques using Python, with the keyword #Jokowi. The methodology used in this study applies the Support Vector Machine (SVM) to categorize public views into positive and negative sentiment categories. The evaluation of the entire process in the program demonstrates the results of each step in the Support Vector Machine method. This evaluation uses metrics such as accuracy, precision, and recall. The results of the analysis obtained from the Support Vector Machine are visualized using a confusion matrix, yielding the following outcomes: True Negative 1,451, True Positive 2,600, False Positive 511, and False Negative 350. These results indicate an accuracy of 82%, precision of 83%, and recall of 88%. The confusion matrix results show that the model accurately identified 2,600 data points with an accuracy of 82%, precision of 83%, recall of 88%, and an F1-Score of 85%. Overall, this analysis demonstrates that the model performs better in recognizing positive sentiments compared to negative sentiments.
References
Ade Dwi Dayani, Yuhandri, et al. 2024. "Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine". Jurnal KomtekInfo, 11, 1–10. https://doi.org/10.35134/komtekinfo.v11i1.439.
Adiati, A. R., Herdiani, A., et al. 2019. "Analisis Sentimen Masyarakat pada Media Sosial Twitter Terhadap Partai Politik Peserta Pemilu 2019 Menggunakan Na ï ve Bayes Classifier", 6(2).
Asno Azzawagama Firdaus, Anton Yudhana, et al. 2023. "Analisis Sentimen Pada Proyeksi Pemilihan Presiden 2024 Menggunakan Metode Support Vector Machine". Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 236–245. https://doi.org/10.51454/decode.v3i2.172.
Darwis, D., Pratiwi, E. S., et al. 2020. "Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia". Edutic - Scientific Journal of Informatics Education, 7(1), 1–11. https://doi.org/10.21107/edutic.v7i1.8779.
Farasqa, B., Akbar, N., et al. 2024. "Analisis Sentimen Terhadap Anies Baswedan Menggunakan Metode Support Vector Machine Studi Kasus Media Sosial Twitter Sentiment Analysis of Anies Baswedan Using the Support Vector Machine Method Case Study of Twitter Social Media", 4(6), 715–724.
Firdlous, D. A., Andrian, R., et al. 2023. "Sentiment Analysis Public Twitter on 2024 Election using the Long Short Term Memory Model". Sistemasi, 12(1), 52. https://doi.org/10.32520/stmsi.v12i1.2145.
Mahawardana, P. P. O., Imawati, I. A. P. F., et al. 2022. "Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap “Figure Pemimpin” Menggunakan Python". Jurnal Manajemen Dan Teknologi Informasi, 12(2), 50–56. retrieved from https://ojs.mahadewa.ac.id/index.php/jmti/article/view/2111.
Nardilasari, A. P., Hananto, A. L., et al. 2023. "Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter". JOINTECS (Journal of Information Technology and Computer Science), 8(1), 11. https://doi.org/10.31328/jointecs.v8i1.4265.
Ni Made Tara Okta Adriana, I Made Agus Dwi Suarjaya, et al. 2023. "Analisis Sentimen Publik Terhadap Aksi Demonstrasi di Indonesia Menggunakan Support Vector Machine Dan Random Forest". Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 257–267. https://doi.org/10.51454/decode.v3i2.187.
Paramarta, M., and Darmawan, J. B. B. 2023. "Implementasi Metode Support Vector Machine dalam Analisis Sentimen Opini Masyarakat Terhadap Pilkada 2020 pada Media Sosial Twitter", 2023(November), 836–841. retrieved from http://journal.itny.ac.id/index.php/ReTII.
PERMATASARI, Y. P. 2022. "Motif Prioritas Kebijakan Pertahanan Era Jokowi Dalam Mempertahankan Kedaulatan Nkri Tahun 2014 -2020". Jurnal Pemerintahan Dan Politik, 7(2). https://doi.org/10.36982/jpg.v7i2.2103.
Sabily, A. F., Adikara, P. P., et al. 2019. "Analisis Sentimen Pemilihan Presiden 2019 pada Twitter menggunakan Metode Maximum Entropy". Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(5), 4204–4209.
Saputra, O. I., Darmawan, W. B., et al. 2022. "Kebijakan Kementerian Pertahanan Republik Indonesia Dalam Memperkuat Alat Utama Sistem Pertahanan Udara". Aliansi : Jurnal Politik, Keamanan Dan Hubungan Internasional, 1(1), 49. https://doi.org/10.24198/aliansi.v1i1.38866.
Sari, D., and Kurniawan, R. 2024. "Sentiment Analysis of The Performance of Medan Mayor Program on Social Media X Using Support Vector Machine Analisis Sentimen Terhadap Kinerja Program Walikota Medan pada Media Sosial X Menggunakan Support Vector Machine", 4(October), 1539–1548.
Sarjito 2023. "INTEGRASI KEBIJAKAN PERTAHANAN DAN RESPON BENCANA DI INDONESIA Aris Sarjito INTEGRATION OF DEFENSE POLICY AND DISASTER RESPONSE IN INDONESIA PENDAHULUAN Artikel ini akan membahas tentang integrasi kebijakan pertahanan dan respon bencana di Indonesia . Ind", 7, 160–172.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I Kadek Adi Kusuma Putra, Ida Bagus Gede Sarasvananda, Putu Shinta Noviaty, I Putu Agus Eka Darma Udayana , Ketut Jaya Atmaja

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.