ANALYZING GLOBAL POPULATION GROWTH: K-MEANS CLUSTERING FOR REGIONAL DEMOGRAPHIC INSIGHTS

Authors

  • Yulia Ayu Sekarsari Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Putu Agus Febri Sedana Putra Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • I Kadek Dwijaputra Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Putu Agus Arya Sastra Sugiarta Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Putu Ajust Putra Pratama Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)
  • Putu Sugiartawan Prodi Studi Informatika, Institut Bisnis dan Teknologi Indonesia (INSTIKI)

Keywords:

K-Means Clustering, Global Population Growth, Demographic Analysis, Data Segmentation

Abstract

Global population growth significantly impacts various aspects of development, including socioeconomic planning and environmental sustainability. This study applies the K-Means clustering algorithm to analyze and categorize global population growth rates, aiming to uncover patterns and trends among different regions. The research uses a dataset comprising population growth rates from multiple countries over a specific timeframe. Data preprocessing steps, such as normalization and outlier handling, were conducted to ensure the accuracy of the analysis. The optimal number of clusters was determined using the elbow method, and the clustering results were validated using silhouette scores to ensure reliability.The analysis identified three distinct groups of countries based on their growth dynamics: rapid growth, moderate growth, and population decline. Countries experiencing rapid growth include Pakistan and Nigeria, while nations with moderate growth include India and the United States. In contrast, countries with population decline are represented by Japan and some European nations, such as Germany. These insights provide valuable information for policymakers and researchers to develop targeted strategies for addressing demographic challenges. This study demonstrates the effectiveness of the K-Means algorithm in analyzing complex population growth data and its potential applications in demographic and socioeconomic research.

References

Aggarwal, C. C. (2013). Outlier Analysis. Springer Science & Business Media.

Chen, F., & Zhao, Y. (2021). Application of K-Means Clustering to Analyze Global Population Growth Rates. International Journal of Data Science, 12(3), 220–234.

Ghosh, A., Singh, R., & Kumar, V. (2023). Integrating Socioeconomic Indicators with Clustering Techniques for Population Growth Analysis. Demographic Insights Journal, 25(5), 150–168.

Armaeni, P. P., Wiguna, I. K. A. G., & Parwita, W. G. S. (2024). Sentiment Analysis of YouTube Comments on the Closure of TikTok Shop Using Naïve Bayes and Decision Tree Method Comparison. Jurnal Galaksi, 1(2), 70–80. https://doi.org/10.70103/galaksi.v1i2.15

Hidayat, D. C., Atmaja, I. K. J., & Sarasvananda, I. B. G. (2024). Analysis and Comparison of Micro Frontend and Monolithic Architecture for Web Applications. Jurnal Galaksi, 1(2), 92–100. https://doi.org/10.70103/galaksi.v1i2.19

Saputro, J., Saini, K., & Valentine, H. M. (2024). Data Visualization of Higher Education Participation Rates in Indonesia Provinces. Jurnal Galaksi, 1(2), 101–109. https://doi.org/https://doi.org/10.70103/galaksi.v1i2.20

Widjaja, W., Suprihartini, Y., Dirgantoro, G. P., & Wahyudi, W. (2024). Application of ROC Criteria Prioritization Technique in Employee Performance Appraisal Evaluation. Jurnal Galaksi, 1(1), 62–69. https://doi.org/10.70103/galaksi.v1i1.7

Ghosh, S., Ghosh, A., & Patra, R. (2018). A Study on Clustering Algorithms for Population Dynamics. International Journal of Demographic Research, 12(3), 45-58.

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann Publishers.

Hernandez, P., & Martinez, R. (2018). Time-Series Analysis of Population Growth and Socioeconomic Factors. Population Research Review, 30(1), 77–89.

Jain, A. K. (2010). Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters, 31(8), 651-666.

Little, R. J., & Rubin, D. B. (2019). Statistical Analysis with Missing Data (3rd ed.). Wiley Series in Probability and Statistics.

Liu, Y., Li, J., & Zhou, Z. (2015). Demographic Clustering and Population Analysis Using Machine Learning Techniques. Applied Statistics Journal, 23(2), 89-104.

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 281-297). University of California Press.

Rousseeuw, P. J. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53-65.

Smith, J., Brown, M., & Lee, S. (2019). Clustering Population Growth Patterns in Developing Regions. Journal of Demographic Studies, 45(2), 101–115.

Smith, M., Johnson, P., & Lee, C. (2017). Population Growth Trends: Challenges and Policy Recommendations. Global Policy Review, 29(4), 312-328.

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Pearson Education.

United Nations. (2023). World Population Prospects 2023: Demographic Indicators. New York: United Nations Publications.

Wang, X., Liu, Z., & Zhang, T. (2022). Machine Learning for Population Dynamics: Identifying Patterns and Trends. Advances in Data Analytics, 19(4), 410–425.

World Bank. (2023). World Development Indicators: Population Growth Rates. Retrieved from worldbank.org.

World Bank. (2024). World Development Indicators: Population Growth. Retrieved from worldbank.org.

Downloads

Published

2024-12-28

How to Cite

Ayu Sekarsari, Y., Agus Febri Sedana Putra, P., Kadek Dwijaputra, I., Agus Arya Sastra Sugiarta, P., Ajust Putra Pratama, P., & Sugiartawan, P. (2024). ANALYZING GLOBAL POPULATION GROWTH: K-MEANS CLUSTERING FOR REGIONAL DEMOGRAPHIC INSIGHTS. Proceeding International Conference on Information Technology, Multimedia, Architecture, Design, and E-Business, 3, 478–482. Retrieved from https://eprosiding.idbbali.ac.id/index.php/imade/article/view/923

Most read articles by the same author(s)