CLUSTERING COLLEGE ENTRANCE EXAM SCORES USING K-MEANS METHOD

Authors

  • Surya Rahmadani Institut Bisnis dan Teknologi Indonesia
  • Putu Sugiartawan Institut Bisnis dan Teknologi Indonesia
  • I Gede Duta Kharisma Putra Institut Bisnis dan Teknologi Indonesia
  • I Kadek Adi Rian Nugraha Institut Bisnis dan Teknologi Indonesia
  • I Gede Adnyana Putra
  • Ketut Dionanda Sutrisna Institut Bisnis dan Teknologi Indonesia

Keywords:

Clustering, K-Means, Exam Scores, Silhouette Score

Abstract

The new student selection process in higher education faces the challenge of managing an ever-increasing amount of exam data, which is often inefficient and error-prone. This research implements the K-Means clustering method to group the entrance exam scores of prospective students, aiming to improve efficiency and accuracy in decision-making. Data collected from different types of selection tests were prepared through cleaning and normalization before applying the K-Means algorithm. The analysis results showed that the method successfully grouped prospective students into three clusters with clear academic characteristics, and produced a Silhouette Score of 0.72, indicating good clustering quality. The findings provide important insights for universities in planning study programs and developing more adaptive educational policies.

References

Khandare, A., & Desai, H., 2022, ‘Comparative Analysis of Clustering Algorithms’, In Computing and Communications Engineering in Real-Time Application Development, Apple Academic Press, 139–152. doi: 10.1149/10701.2435ecst. [Jenis ref: Buku]

I. B., Thamrin, A. N., & Milani, A., 2024, ‘Implementasi Etika Penggunaan Kecerdasan Buatan (AI) dalam Sistem Pendidikan dan Analisis Pembelajaran di Indonesia’, Digital Transformation Technology, 4(1), 714–723. doi: 10.47709/digitech.v4i1.4512. [Jenis ref: Jurnal]

Muktamar, A., Sari, Y., & Wiradana, N., 2023, ‘Proses Pengambilan Keputusan dalam Kelompok’, Journal Of International Multidisciplinary Research, 2(1), 44–56, [online], (https://journal.banjaresepacific.com/index.php/jimr, diakses tanggal 23 November 2024). [Jenis ref: Jurnal]

Alfatah, D., Tinggi, S., & Bengkulu, I. A., 2021, ‘Application of the K-Means Clustering Algorithm in Mapping the Regional Voter Strategy for the Legislative Candidates for the DPR RI’, JURNAL KOMITEK, 1(2), 435–443. doi: 10.53697/jkomitek.v1i2. [Jenis ref: Jurnal]

Le Quy, T., Friege, G., & Ntoutsi, E., 2023, A Review of Clustering Models in Educational Data, [online], (diakses tanggal 23 November 2024). [Jenis ref: Artikel Online]

Ginting, R., & Riandari, R., 2020, ‘Clustering bibit tanaman kopi menggunakan algoritma K-Means’, [online], (diakses tanggal 11 Oktober 2024). [Jenis ref: Jurnal].

Maulana, A., & Rosalina, R., 2021, ‘Pengelompokan nilai ujian akhir semester menggunakan K-Means’, [online], (diakses tanggal 10 Oktober 2024). [Jenis ref: Jurnal].

Putri, D., Rahayu, S., & Tofany, M., 2021, ‘Prediksi penyakit diabetes menggunakan data mining’, [online], (diakses tanggal 10 Oktober 2024). [Jenis ref: Jurnal].

Piantari, N. K. A., Putra, I. N. T. A., Widiastutik, S., & Kartini, K. S. (2024). Comparative Analysis of The MOORA Method for Evaluating The Effectiveness of Scholarship Acceptance. Jurnal Galaksi, 1(1), 22–32. https://doi.org/10.70103/galaksi.v1i1.3

Pradnyani, K. D., Sandhiyasa, I. M. S., & Gunawan, I. M. A. O. (2024). Optimising Double Exponential Smoothing for Sales Forecasting Using The Golden Section Method. Jurnal Galaksi, 1(2), 110–120. https://doi.org/10.70103/galaksi.v1i2.21

Saputro, J., Saini, K., & Valentine, H. M. (2024). Data Visualization of Higher Education Participation Rates in Indonesia Provinces. Jurnal Galaksi, 1(2), 101–109. https://doi.org/https://doi.org/10.70103/galaksi.v1i2.20

Suryadana, K., & Sarasvananda, I. B. G. (2024). Streamlining Inventory Forecasting with Weighted Moving Average Method at Parta Trading Companies. Jurnal Galaksi, 1(1), 12–21. https://doi.org/10.70103/galaksi.v1i1.2

Rahayu, S., Tofany, M., & Syamsiyah, S., 2019, ‘Klasterisasi beasiswa Bidikmisi dengan K-Means’, [online], (diakses tanggal 05 Oktober 2024). [Jenis ref: Jurnal].

Syamsiyah, S., & Tofany, M., 2019, ‘Sistem informasi prediksi pinjaman menggunakan algoritma C4.5’, [online], (diakses tanggal 21 Oktober 2024). [Jenis ref: Jurnal].

Jain, R., & Bansal, D. (2020). Data clustering using improved K-Means algorithm. Journal of Big Data, 7(1), 34. doi:10.1186/s40537-020-00338-4

Chen, X., Tian, Y., & Shen, H. (2021). A clustering-based method for personalized student grouping. Education and Information Technologies, 26(5), 6375–6393. doi:10.1007/s10639-021-10523-7

Wang, Z., Wang, C., & Wang, Y. (2019). Application of clustering algorithms in educational big data. IEEE Access, 7, 97083–97091. doi:10.1109/ACCESS.2019.2930178

Das, A., & Pradhan, R. (2023). Enhancing student performance analysis using clustering algorithms. International Journal of Educational Research Open, 4, 100157. doi:10.1016/j.ijedro.2023.100157

Liu, Y., Liu, Y., & Zhang, L. (2022). Clustering methods for academic data analysis: A comprehensive review. Applied Intelligence, 52(6), 7032–7050. doi:10.1007/s10489-022-03283-w

Downloads

Published

2024-12-28

How to Cite

Rahmadani, S., Sugiartawan, P., Putra, I. G. D. K., Nugraha, I. K. A. R., I Gede Adnyana Putra, & Sutrisna, K. D. (2024). CLUSTERING COLLEGE ENTRANCE EXAM SCORES USING K-MEANS METHOD. Proceeding International Conference on Information Technology, Multimedia, Architecture, Design, and E-Business, 3, 387–393. Retrieved from https://eprosiding.idbbali.ac.id/index.php/imade/article/view/890

Most read articles by the same author(s)