SENTIMENT ANALYSIS OF PUBLIC RESPONSE TO GREEN TECHNOLOGY AT X USING NAÏVE BAYES METHOD
Keywords:
sentiment analysis, green technology, society, naïve bayesAbstract
The development of IKN as a green technology city has sparked significant public discourse, particularly on social media platform X. This research aims to analyze public sentiment towards this initiative using a Naïve Bayes classifier. By examining 866 posts and comments from January 2022 to April 2024, tagged with the keyword "green technology". TextBlob was employed to label the data, while a multinomial Naïve Bayes classifier was used for sentiment classification. The results indicate a predominantly negative sentiment, with 59.20% of the data categorized as negative and 40.80% as positive. A confusion matrix analysis of the test data yielded an accuracy of 76%, precision in class 0 of 78%, while in class 1 of 73%, recall in class 0 of 83%, while in class 1 of 66%, F1-score in class 0 of 81%, while in class 1 of 70%. These findings suggest that while there is public support for green technology, a significant portion of the population remains skeptical or concerned about its implementation.
References
Andrian, E., dan Rahman Isnain, A. 2024. "Jurnal Media Informatika Budidarma Analisis Sentimen Masyarakat Terhadap Tiktok Shop di Twitter Menggunakan Metode Naive Bayes Classifier". https://doi.org/10.30865/mib.v8i2.7530.
Aryanti Putri Gea, dan Santoso Imam 2023. Analisis Sentimen Pad witter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes. diambil dari https://journals.upi-yai.ac.id/index.php/ikraith-informatika/issue/archive.
Bilgin, U., dan Soner Kara, S. 2024. "Identification of Perceived Challenges in the Green Energy Transition by Turkish Society through Sentiment Analysis". Sustainability (Switzerland) , 16(8). https://doi.org/10.3390/su16083367.
Dian Agus Prawinata, Ani Dijah Rahajoe, dkk. 2024. "Analisis Sentimen Kendaraan Listrik Pada Twitter Menggunakan Metode Long Short Term Memory". SABER : Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi, 2(1), 300–313. https://doi.org/10.59841/saber.v2i1.857.
Grootendorst, M. 2022. "BERTopic: Neural topic modeling with a class-based TF-IDF procedure". diambil dari http://arxiv.org/abs/2203.05794.
Hairunnisa, 2Wisda Aprilia Syaka 2022. "Analisis Komunikasi Politik Dalam Percepatan Pembangunan Ibu Kota Nusantara (Ikn) Menuju Kota Berkelanjutan".
Hazarika, D., Konwar, G., dkk. 2020. "Sentiment Analysis on Twitter by Using TextBlob for Natural Language Processing". Proceedings of the International Conference on Research in Management & Technovation 2020, 24, 63–67. PTI, https://doi.org/10.15439/2020km20.
Hotnida Nainggolan, R. N. S. S. I. W. T. A. A. M. I. A. E. P. A. A. H. P. 2023. "GreenTechnology Innovation: Transformasi Teknologi Ramah Lingkungan berbagai Sektor".
Krstinić, D., Braović, M., dkk. 2020. "Multi-label Classifier Performance Evaluation with Confusion Matrix", 01–14. Academy and Industry Research Collaboration Center (AIRCC), https://doi.org/10.5121/csit.2020.100801.
Muhammad Ammar Nur Handyka 2023. "Muhammad+AmmarNH_Peran+Teknologi+Hijau+Dalam+Mencapai+Pembangunan+Berkelanjutan+di+Masa+Depan". JECTH : Journal Economy, Technology , Social and Humanities.
Nurmadewi, D., Putri Gusti, C., dkk. 2023. "Analisis Sentimen untuk Melihat Respon Masyarakat Terhadap Vaksin Pfizer". Journal of Technology and Informatics (JoTI), 4(2), 77–80. https://doi.org/10.37802/joti.v4i2.322.
Rabbani, S., Safitri, D., dkk. 2023. "Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM". MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 153–160. https://doi.org/10.57152/malcom.v3i2.897.
Riehl, K., Neunteufel, M., dkk. 2023. "Hierarchical confusion matrix for classification performance evaluation". Journal of the Royal Statistical Society. Series C: Applied Statistics, 72(5), 1394–1412. https://doi.org/10.1093/jrsssc/qlad057.
Safira, A., Masyarakat…, A. S., dkk. 2023. "Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier". Jurnal Sistem Informasi, 5(1).
Talita, A. S., Nataza, O. S., dkk. 2021. "Naïve Bayes Classifier and Particle Swarm Optimization Feature Selection Method for Classifying Intrusion Detection System Dataset". Journal of Physics: Conference Series, 1752. IOP Publishing Ltd, https://doi.org/10.1088/1742-6596/1752/1/012021.
Uludag, O., dan Gursoy, A. 2020. "On the Financial Situation Analysis with KNN and Naive Bayes Classification Algorithms". Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2881–2888. https://doi.org/10.21597/jist.703004.
Wati, R., Ernawati, S., dkk. 2023. "Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH". Jurnal Manajemen Informatika (JAMIKA), 13(1), 84–93. https://doi.org/10.34010/jamika.v13i1.9424.
Wickramasinghe, I., dan Kalutarage, H. 2021. "Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation". Soft Computing, 25(3), 2277–2293. https://doi.org/10.1007/s00500-020-05297-6.
Xu, J., Zhang, Y., dkk. 2020. "Three-way confusion matrix for classification: A measure driven view". Information Sciences, 507, 772–794. https://doi.org/10.1016/j.ins.2019.06.064.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yulialda Mashun, I Gusti Ayu Agung Mas Aristamy, Ni Wayan Suardiati Putri, I Made Subrata Sandhiyasa, Ayu Gede Willdahlia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.