ANALYSIS OF PUBLIC SENTIMENT TOWARDS THE TAPERA PROGRAM ON SOCIAL MEDIA X AND YOUTUBE USING SVM AND NAIVE BAYES

Authors

  • I Made Egar Suputra Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • Ida Bagus Ary Indra Iswara Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • Luh Putu Rara Ayu Ratnaningrum Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • Aniek Suryanti Kusuma Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia
  • Christina Purnama Yanti Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia

Keywords:

sentiment analysis, Tapera, Social Media X, YouTube, SVM and Naive Bayes

Abstract

This research aims to determine public reactions to the government program, Public Housing Savings (Tapera), on Social Media X (formerly known as Twitter) and YouTube. The research employs machine learning techniques, specifically the Support Vector Machine (SVM) and Naive Bayes algorithms, to classify user sentiment into positive or negative categories. Data was collected during the period from May 20, 2024, to September 31, 2024, through the social media platforms X and YouTube, resulting in a total of 12337 data points, with 7511 data points processed for analysis. The classification results show that SVM achieved a higher accuracy score of 80.59%, compared to 52.23% for Naïve Bayes. Based on the research, it can be concluded that the Indonesian public provided more negative comments about TAPERA, reflecting dissatisfaction or concerns regarding the program's implementation. This research uses data from Social Media X and YouTube to understand public perceptions of this government program.

References

Al, H., Harpizon, R., dkk. 2022. "Analisis Sentimen Komentar Di YouTube Tentang Ceramah Ustadz Abdul Somad Menggunakan Algoritma Naïve Bayes", 5(1), 131–140.

Ananda, D., dan Suryono, R. R. 2024. "JURNAL MEDIA INFORMATIKA BUDIDARMA Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes". Jurnal Media Informatika Budidarma, 8(2), 748–757. https://doi.org/10.30865/mib.v8i2.7517.

Brereton, R. G., dan Lloyd, G. R. 2010. "Support Vector Machines for classification and regression", 230–267. https://doi.org/10.1039/b918972f.

Hasri, C. F., dan Alita, D. 2022. "PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE PADA ANALISIS SENTIMEN TERHADAP DAMPAK VIRUS CORONA DI TWITTER", 3(2), 145–160.

Hendrastuty, N., Isnain, A. R., dkk. 2021. "Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine", 6(3), 150–155.

Ilmiah, J., dan Pendidikan, W. 2022. "Juni 2018 Chariul Fadlan, Selfia Ningsih, Agus Perdana Windarto PENERAPAN METODE NAÏVE BAYES DALAM KLASIFIKASI", 8(17), 206–212.

Ipmawati, J., Kusrini, dkk. 2017. "Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen". Indonesian Journal on Networking and Security, 6(1), 28–36.

Jatika, P. L., Supriyanto, J., dkk. 2023. "Penerapan Algoritma K-Nearest Neighbor ( K-NN ) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring", 4, 74–80.

Margaretha, V. 2024. "Mengurai Dampak Kebijakan Tapera Terhadap Masyarakat Indonesia : Sebuah Kajian Hukum dan Sosial", 1.

Ritonga, S. W., Fikry, M., dkk. 2023. "Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier", 5(1). https://doi.org/10.47065/bits.v5i1.3535.

Romadloni, N. T., Santoso, I., dkk. 2019. "Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line". Jurnal IKRA-ITH Informatika: Jurnal Komputer dan Informatika, 3(2), 1–9.

Shao, Z., Yang, K., dkk. 2018. "A benchmark dataset for performance evaluation of multi-label remote sensing image retrieval". Remote Sensing, 10(6). https://doi.org/10.3390/rs10060964.

Sistem, R. 2021. "Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan", 1(10), 17–23.

Wijaya, M., dan Handrisal, H. 2021. "Kebijakan Penyelenggaraan Perumahan Masyarakat Berpenghasilan Rendah di Kabupaten Lahat Provinsi Sumatera Selatan". KEMUDI : Jurnal Ilmu Pemerintahan, 6(01), 37–51. https://doi.org/10.31629/kemudi.v6i01.3579.

Yanti, C. P., Agustini, N. W. E., dkk. 2023. "Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia". Media Informatika Budidarma, 7(2), 756–765. https://doi.org/10.30865/mib.v7i2.5900.

Downloads

Published

2024-12-28

How to Cite

Suputra, I. M. E., Iswara, I. B. A. I., Ratnaningrum, L. P. R. A., Kusuma, A. S., & Yanti, C. P. (2024). ANALYSIS OF PUBLIC SENTIMENT TOWARDS THE TAPERA PROGRAM ON SOCIAL MEDIA X AND YOUTUBE USING SVM AND NAIVE BAYES. Proceeding International Conference on Information Technology, Multimedia, Architecture, Design, and E-Business, 3, 436–442. Retrieved from https://eprosiding.idbbali.ac.id/index.php/imade/article/view/921