MAPPING GLOBAL PASSPORT POWER : A K-MEANS CLUSTERING APPROACH TO ANALYZING STRENGTH AND DISPARITIES
Keywords:
passport power, global mobility, visa-free access, K-Means Clustering, passport rankingAbstract
This study examines global passport strength and its influence on international mobility. Using a dataset of 199 countries from Kaggle, the research applies K-Means Clustering to investigate the relationship between passport rankings and visa-free access. Results reveal Singapore as the global leader, with visa-free access to 195 destinations, while Bangladesh ranks lowest with access to only 40 destinations. A strong negative correlation (-0.99) between passport rankings and visa-free access highlights that greater visa-free access improves a country's passport ranking. Descriptive, comparative, and trend analyses illustrate disparities, with developed nations achieving higher mobility levels. The clustering analysis groups countries based on their visa-free access, identifying distinct patterns of global mobility. The findings emphasize the critical role of international agreements and diplomatic relations in enhancing passport strength and reducing mobility disparities. This study provides valuable insights into the factors shaping passport power, offering guidance for policies aimed at fostering equitable global mobility.
References
Akramunnisa, Fajriani, 2020 ‘K-MEANS Clustering Analysis Pada Persebaran Tingkat Pengangguran Kabupaten/Kota Di Sulawesi Selatan’ Jurnal Varian, 103-112
Anshari, A. N., Noviarini, N., Chandra, L. N., Mayline, H., & Ariani, A. S. 2022. Kebijakan Visa Indonesia: Keamanan, Dampak, Peluang, Tantangan dan Teknologi Informasi. Jurnal Kajian Stratejik Ketahanan Nasional, 88-100
Anggraini, R., Usmar Salam, Drs. 2018. ‘Kekuatan Paspor Indonesia di Asia Tenggara’. UGM Repository, 1-15.
Aria, T. A., Yuliadi, M., Julkarnain, M., & Hamdani, F. (2023). ‘Penerapan algoritma K-Means clustering untuk data obat.’ Kajian Ilmiah Informatika dan Komputer, 649–657.
Cahyo Wiguno, T., & Nataliani, Y. 2022, ‘Penerapan k-Means Clustering Berdasarkan Analisis RFM Terhadap Segmentasi Pembeli untuk Meningkatkan Strategi CRM’ 6, 1871-1881
Chandra, M. D., Irawan, E., Saragih, I. S., Windarto, A. P., & Suhendro, D. (2021). ‘Penerapan algoritma K-Means dalam mengelompokkan balita yang mengalami gizi buruk menurut provinsi.’ Jurnal Teknologi Informasi dan Rekayasa Komputer, 2(1), 30–38.
Dona Marcelina, A. K. 2023. ‘Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering’. journal of Machine Learning and Computer Science, 293-301.
Dwitri, N., Tampubolon, J. A., Prayoga, S., Ilmi, P. P. P. A. N. W. F., Zer, R. H., & Hartama, D. (2020). ‘Penerapan algoritma K-Means dalam menentukan tingkat penyebaran pandemi COVID-19 di Indonesia’ Jurnal Teknologi Informasi, 128–132.
F N Dhewayani, D. A. 2022. ‘Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM’. Jurnal Teknologi dan Informasi , 64-77.
Filki, Y. (2022). ‘Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa’. Jurnal Informatika Ekonomi Bisnis, 166-171.
Humam Aziz Romdhoni, M. T. 2018. ‘Clustering Mobilitas Masyarakat Berdasarkan Moda Transportasi’. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer , 2459-2464 .
Piantari, N. K. A., Putra, I. N. T. A., Widiastutik, S., & Kartini, K. S. (2024). Comparative Analysis of The MOORA Method for Evaluating The Effectiveness of Scholarship Acceptance. Jurnal Galaksi, 1(1), 22–32. https://doi.org/10.70103/galaksi.v1i1.3
Pradnyani, K. D., Sandhiyasa, I. M. S., & Gunawan, I. M. A. O. (2024). Optimising Double Exponential Smoothing for Sales Forecasting Using The Golden Section Method. Jurnal Galaksi, 1(2), 110–120. https://doi.org/10.70103/galaksi.v1i2.21
Saputro, J., Saini, K., & Valentine, H. M. (2024). Data Visualization of Higher Education Participation Rates in Indonesia Provinces. Jurnal Galaksi, 1(2), 101–109. https://doi.org/https://doi.org/10.70103/galaksi.v1i2.20
Suryadana, K., & Sarasvananda, I. B. G. (2024). Streamlining Inventory Forecasting with Weighted Moving Average Method at Parta Trading Companies. Jurnal Galaksi, 1(1), 12–21. https://doi.org/10.70103/galaksi.v1i1.2
Kusmiran, A. 2022. ‘Clustering and Risk Analysis of The Earthquake in Sulawesi Using Mini Batch K-Means, K-Medoids, and Maximum Likelihood Method’. Journal of Islamic Science and Technology, 1-23.
Mawaddah Anjelita, A. P. 2019. ‘Analisis Metode K-Means pada Kasus Ekspor Barang Perhiasan dan Barang Berharga Berdasarkan Negara Tujuan’. Seminar Nasional Sains & Teknologi Informasi, 476 – 482 .
Mulyanul Ilmi Mashura, Y. S. 2022. ‘Analisis Performa Metode Cluster K-Means pada Dataset Ocular Disease Recognition’. Indonesian Journal of Data and Science, 35-46.
N. Rakhmawaty, N. Y. Nasution, and F. D. T. Amijaya. 2022 ‘Perbandingan Metode K-Means Dan Metode Fuzzy C-Means (FCM) Pada Analisis Kinerja Pegawai PT. Cemara Khatulistiwa Persada Bontang’ Jurnal EksponensialL,. 63–71.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dewa Gede Raka Suputra, Komang Sudi Astrini, Komang Agus Anjas Putra, Maria Magdalena Indri, Mariana Klarita Daud, Putu Sugiartawan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.