OPTIMIZING VESSEL ROUTING AND SUSTAINABILITY WITH LAKEHOUSE ARCHITECTURES: A SYSTEMATIC REVIEW
Keywords:
AIS, data lakehouse, maritime analytics, real-time data, vessel routingAbstract
The growth of maritime transportation underscores the need for advanced data systems to enhance vessel operations. Automatic Identification System (AIS) data generates large volumes of information, requiring efficient architectures for real-time processing and analysis. This systematic literature review examines the use of lakehouse architectures, which combine the flexibility of data lakes with the structured querying of data warehouses, for AIS data integration and analytics. The study highlights how lakehouses improve scalability, data organization, and real-time analysis, enabling practical applications such as anomaly detection, route optimization, and sustainability efforts. Tools like Delta Lake and Apache Hudi are identified as effective solutions, though gaps remain in maritime-specific implementations. This review offers actionable insights and future directions for leveraging lakehouses in maritime data management.
References
Azeroual, O., Schöpfel, J., Ivanovic, D., & Nikiforova, A. (2022). Combining Data Lake and Data Wrangling for Ensuring Data Quality in CRIS. Procedia Computer Science, 211(C), 3–16. https://doi.org/10.1016/j.procs.2022.10.171
Bakken, M., & Soylu, A. (2023). Chrontext: Portable SPARQL queries over contextualised time series data in industrial settings. Expert Systems with Applications, 226(December 2022), 120149. https://doi.org/10.1016/j.eswa.2023.120149
Fan, X., & Lu, J. (2024). ScienceDirect Enterprise Level Data Warehouse System Based on Hive in Big Data Environment. Procedia Computer Science, 243, 67–75. https://doi.org/10.1016/j.procs.2024.09.010
Gentner, T., Neitzel, T., Schulze, J., Gerschner, F., & Theissler, A. (2023). Data Lakes in Healthcare: Applications and Benefits from the Perspective of Data Sources and Players. Procedia Computer Science, 225, 1302–1311. https://doi.org/10.1016/j.procs.2023.10.118
Harby, A. A., & Zulkernine, F. (2024). Data Lakehouse: A Survey and Experimental Study. Information Systems, 00(September 2024), 1–23. https://doi.org/10.1016/j.is.2024.102460
Hoseini, S., Theissen-Lipp, J., & Quix, C. (2024). A survey on semantic data management as intersection of ontology-based data access, semantic modeling and data lakes. Journal of Web Semantics, 81(February), 100819. https://doi.org/10.1016/j.websem.2024.100819
Ikegwu, A. C., Nweke, H. F., & Anikwe, C. V. (2024). Recent trends in computational intelligence for educational big data analysis. Iran Journal of Computer Science, 7(1), 103–129. https://doi.org/10.1007/s42044-023-00158-5
Janssen, N., Ilayperuma, T., Jayasinghe, J., Bukhsh, F., & Daneva, M. (2024). The evolution of data storage architectures: examining the secure value of the Data Lakehouse. Journal of Data, Information and Management, 6(4), 309–334. https://doi.org/10.1007/s42488-024-00132-1
Mora, L., Gerli, P., Ardito, L., & Messeni Petruzzelli, A. (2023). Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda. Technovation, 123(December 2021). https://doi.org/10.1016/j.technovation.2023.102717
Oliveira, B., Duarte, A., & Oliveira, Ó. (2024). Towards a Data Catalog for Data Analytics. Procedia Computer Science, 237(2021), 691–700. https://doi.org/10.1016/j.procs.2024.05.155
Plazotta, M., & Klettke, M. (2024). Data Architectures in Cloud Environments. 243–247. https://doi.org/10.1007/s13222-024-00490-5
Schneider, J., Gröger, C., Lutsch, A., Schwarz, H., & Mitschang, B. (2024). The Lakehouse: State of the Art on Concepts and Technologies. In SN Computer Science (Vol. 5, Issue 5). Springer Nature Singapore. https://doi.org/10.1007/s42979-024-02737-0
Sheng, M., Wang, S., Zhang, Y., Hao, R., Liang, Y., Luo, Y., Yang, W., Wang, J., Li, Y., Zheng, W., & Li, W. (2024). A multi-source heterogeneous medical data enhancement framework based on lakehouse. Health Information Science and Systems, 12(1). https://doi.org/10.1007/s13755-024-00295-6
Shojaee Rad, Z., & Ghobaei-Arani, M. (2024). Data pipeline approaches in serverless computing: a taxonomy, review, and research trends. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00939-0
Shoshi, A., Gunduz, B., & Miehe, R. (2024). Identifying intelligent data utilization in bioprocesses: Overview of current research activities, opportunities and barriers. Procedia CIRP, 126, 869–874. https://doi.org/10.1016/j.procir.2024.08.276
Walha, A., Ghozzi, F., & Gargouri, F. (2024). Data integration from traditional to big data: main features and comparisons of ETL approaches. In Journal of Supercomputing (Vol. 80, Issue 19). Springer US. https://doi.org/10.1007/s11227-024-06413-1
Wang, X., Carey, M. J., & Tsotras, V. J. (2022). Subscribing to big data at scale. In Distributed and Parallel Databases (Vol. 40, Issues 2–3). Springer US. https://doi.org/10.1007/s10619-022-07406-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 I Wayan Sudiarsa, I Made Oka Widyantara, Made Sudarma, Ni Made Ary Esta Dewi Wirastuti

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.