MENGOPTIMALKAN TRANSPORTASI LAUT: MENGANALISIS STRATEGI LAYANAN INOVATIF DAN AKSESIBILITAS UNTUK PENINGKATAN EFISIENSI, KEPUASAN PELANGGAN PADA PT YICHENG LOGISTIK TRANSPORTASI JAKARTA
Keywords:
Transportasi LautAbstract
Transportasi laut memegang peranan penting dalam rantai logistik global, terutama bagi perusahaan seperti PT Yicheng Logistik Transportasi Jakarta yang beroperasi dalam sektor pengiriman barang. Efisiensi layanan dan tingkat kepuasan pelanggan menjadi faktor utama dalam menentukan daya saing perusahaan. Penelitian ini bertujuan untuk menganalisis strategi inovatif dalam layanan transportasi laut serta peningkatan aksesibilitas guna meningkatkan efisiensi operasional dan kepuasan pelanggan. Metode yang digunakan dalam penelitian ini meliputi pendekatan kualitatif dan kuantitatif, dengan pengumpulan data melalui wawancara, survei pelanggan, serta analisis performa operasional perusahaan. Hasil penelitian menunjukkan bahwa adopsi teknologi digital, optimalisasi rute pengiriman, serta peningkatan transparansi informasi logistik memiliki dampak signifikan terhadap efisiensi operasional dan pengalaman pelanggan. Selain itu, penerapan layanan berbasis digital, seperti pelacakan real-time dan sistem manajemen otomatis, berkontribusi dalam meningkatkan kepuasan pelanggan dengan memberikan kecepatan dan ketepatan layanan yang lebih baik. Dengan demikian, penelitian ini menyimpulkan bahwa strategi inovatif dan peningkatan aksesibilitas dalam layanan transportasi laut merupakan faktor kunci dalam meningkatkan daya saing perusahaan. Rekomendasi utama bagi PT Yicheng Logistik Transportasi Jakarta adalah mengimplementasikan solusi berbasis teknologi dan memperkuat infrastruktur layanan guna menciptakan ekosistem logistik yang lebih efisien dan berorientasi pada kepuasan pelanggan.
Downloads
References
UNCTAD. (2021). Review of Maritime Transport 2021. United Nations.
Kumar, S., Singh, R., & Gupta, P. (2022). The Role of IoT in Logistics and Supply Chain Management: A Review. *International Journal of Logistics Systems and Management*, 40(1), 1-20.
World Bank. (2020). Logistics Performance Index. World Bank Publications.
Logistics Management. (2021). Annual Logistics Survey. Logistics Management.
Arki Rifazka ( 2024 ) Revolusi Teknologi dala, transportasi Indonesia. Digitaltransformation.co.id
Mikael Lind. Et, Al ( 2016 ). Sea Traffic Management – Beneficial for All Maritime Stakeholders. Transportation research Procedia.
Advent Candra Et, Al ( 2024 ) Analisis Strategi Manajemen Jasa dalam Meningkatkan Kepuasan Pelanggan di PT Gojek Indonesia. Jurnal publikasi ekonomi dan Akuntasi 2 ( 4 ) 452-459.
Maria Teresa Pereira Et.Al ( 2025 ) Process Optimization in Sea Ports: Integrating Sustainability and Efficiency Through a Novel Mathematical Model, Maritime Transport and Port Management 13 ( 1 ) page 1 – 25.
Sahraoui, A.; Tran, N.K.; Tliche, Y.; Kacem, A.; Taghipour, A. Examining ICT Innovation for Sustainable Terminal Operations in Developing Countries: A Case Study of the Port of Radès in Tunisia. Sustainability 2023, 15, 9123.
Wu, B.; Yip, T.L.; Yan, X.; Guedes Soares, C. Review of Techniques and Challenges of Human and Organizational Factors Analysis in Maritime Transportation. Reliab. Eng. Syst. Saf. 2022, 219, 108249.
Öztürk, O.B. Evaluation of the Factors Causing Container Lost at Sea through Fuzzy-Based Bayesian Network. Reg. Stud. Mar. Sci. 2024, 73, 103466.
Yazir, D.; Şahin, B.; Yip, T.; Tseng, P.-H. Effects of COVID-19 on Maritime Industry: A Review. Int. Marit. Health 2020, 71, 253–264.]
Monios, J. Environmental Governance in Shipping and Ports: Sustainability and Scale Challenges. Marit. Transp. Reg. Sustain. 2020, 2020, 13–29.]
Song, D.-P. Container Logistics and Maritime Transport; Routledge: New York, NY, USA, 2021; p. 400. ISBN 9780429320996.]
Roy, D.; De Koster, R.; Bekker, R. Modeling and Design of Container Terminal Operations. Oper. Res. 2020, 68, 686–715.]
Hlali, A.; Hammami, S. The Evolution of Containerization and Its Impact on the Maghreb Ports. Ann. Mar. Sci. 2019, 3, 1–5.]
Rodrigues, F.; Agra, A. An Exact Robust Approach for the Integrated Berth Allocation and Quay Crane Scheduling Problem under Uncertain Arrival Times. Eur. J. Oper. Res. 2021, 295, 499–516.]
Xu, D.; Li, C.-L.; Leung, J.Y.-T. Berth Allocation with Time-Dependent Physical Limitations on Vessels. Eur. J. Oper. Res. 2012, 216, 47–56.]
Daganzo, C.F. The Crane Scheduling Problem. Transp. Res. Part B Methodol. 1989, 23, 159–175.]
Mnasri, S.; Alrashidi, M. A Comprehensive Modeling of the Discrete and Dynamic Problem of Berth Allocation in Maritime Terminals. Electronics 2021, 10, 2684.]
Zhu, Y.; Lim, A. Crane Scheduling with Non-Crossing Constraint. J. Oper. Res. Soc. 2006, 57, 1464–1471.]
Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.J. IEGA: An Improved Elitism-based Genetic Algorithm for Task Scheduling Problem in Fog Computing. Int. J. Intell. Syst. 2021, 36, 4592–4631.]
Liang, C.; Huang, Y.; Yang, Y. A Quay Crane Dynamic Scheduling Problem by Hybrid Evolutionary Algorithm for Berth Allocation Planning. Comput. Ind. Eng. 2009, 56, 1021–1028.]
Golias, M.M.; Saharidis, G.K.; Boile, M.; Theofanis, S.; Ierapetritou, M.G. The Berth Allocation Problem: Optimizing Vessel Arrival Time. Marit. Econ. Logist. 2009, 11, 358–377.]
Bierwirth, C.; Meisel, F. A Survey of Berth Allocation and Quay Crane Scheduling Problems in Container Terminals. Eur. J. Oper. Res. 2010, 202, 615–627.
Zhang, C.; Zheng, L.; Zhang, Z.; Shi, L.; Armstrong, A.J. The Allocation of Berths and Quay Cranes by Using a Sub-Gradient Optimization Technique. Comput. Ind. Eng. 2010, 58, 40–50.
Tasoglu, G.; Yildiz, G. Simulated Annealing Based Simulation Optimization Method for Solving Integrated Berth Allocation and Quay Crane Scheduling Problems. Simul. Model. Pract. Theory 2019, 97, 101948.
Wawrzyniak, J.; Drozdowski, M.; Sanlaville, É. Selecting Algorithms for Large Berth Allocation Problems. Eur. J. Oper. Res. 2020, 283, 844–862.
Chang, D.; Jiang, Z.; Yan, W.; He, J. Integrating Berth Allocation and Quay Crane Assignments. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 975–990.
Barros, V.H.; Costa, T.S.; Oliveira, A.C.M.; Lorena, L.A.N. Model and Heuristic for Berth Allocation in Tidal Bulk Ports with Stock Level Constraints. Comput. Ind. Eng. 2011, 60, 606–613.
Raa, B.; Dullaert, W.; Van Schaeren, R. An Enriched Model for the Integrated Berth Allocation and Quay Crane Assignment Problem. Expert Syst. Appl. 2011, 38, 14136–14147.
Yang, C.; Wang, X.; Li, Z. An Optimization Approach for Coupling Problem of Berth Allocation and Quay Crane Assignment in Container Terminal. Comput. Ind. Eng. 2012, 63, 243–253.
Song, L.; Cherrett, T.; Guan, W. Study on Berth Planning Problem in a Container Seaport: Using an Integrated Programming Approach. Comput. Ind. Eng. 2012, 62, 119–128
Chen, J.H.; Lee, D.-H.; Cao, J.X. A Combinatorial Benders’ Cuts Algorithm for the Quayside Operation Problem at Container Terminals. Transp. Res. Part E Logist. Transp. Rev. 2012, 48, 266–275.
Kaveshgar, N.; Huynh, N.; Rahimian, S.K. An Efficient Genetic Algorithm for Solving the Quay Crane Scheduling Problem. Expert Syst. Appl. 2012, 39, 13108–13117.
Diabat, A.; Theodorou, E. An Integrated Quay Crane Assignment and Scheduling Problem. Comput. Ind. Eng. 2014, 73, 115–123.
Nikolopoulos, L.; Boulougouris, E. A Novel Method for the Holistic, Simulation Driven Ship Design Optimization under Uncertainty in the Big Data Era. Ocean Eng. 2020, 218, 107634.
Hu, Q.-M.; Hu, Z.-H.; Du, Y. Berth and Quay-Crane Allocation Problem Considering Fuel Consumption and Emissions from Vessels. Comput. Ind. Eng. 2014, 70, 1–10.
Bierwirth, C.; Meisel, F. A Follow-up Survey of Berth Allocation and Quay Crane Scheduling Problems in Container Terminals. Eur. J. Oper. Res. 2015, 244, 675–689.
Türkoğulları, Y.B.; Taşkın, Z.C.; Aras, N.; Altınel, İ.K. Optimal Berth Allocation, Time-Variant Quay Crane Assignment and Scheduling with Crane Setups in Container Terminals. Eur. J. Oper. Res. 2016, 254, 985–1001.
Liu, C.; Zheng, L.; Zhang, C. Behavior Perception-Based Disruption Models for Berth Allocation and Quay Crane Assignment Problems. Comput. Ind. Eng. 2016, 97, 258–275.
Karam, A.; Eltawil, A.B. Functional Integration Approach for the Berth Allocation, Quay Crane Assignment and Specific Quay Crane Assignment Problems. Comput. Ind. Eng. 2016, 102, 458–466.
Al-Dhaheri, N. Ship Stability Considerations in the Quay Crane Scheduling Problem. In Modeling, Computing and Data Handling Methodologies for Maritime Transportation; Springer: Berlin/Heidelberg, Germany, 2018; pp. 49–57.
Mauri, G.R.; Ribeiro, G.M.; Lorena, L.A.N.; Laporte, G. An Adaptive Large Neighborhood Search for the Discrete and Continuous Berth Allocation Problem. Comput. Oper. Res. 2016, 70, 140–154.
Qin, T.; Du, Y.; Sha, M. Evaluating the Solution Performance of IP and CP for Berth Allocation with Time-Varying Water Depth. Transp. Res. Part E Logist. Transp. Rev. 2016, 87, 167–185.
Agra, A.; Oliveira, M. MIP Approaches for the Integrated Berth Allocation and Quay Crane Assignment and Scheduling Problem. Eur. J. Oper. Res. 2018, 264, 138–148.
Al-Dhaheri, N.; Jebali, A.; Diabat, A. The Quay Crane Scheduling Problem with Nonzero Crane Repositioning Time and Vessel Stability Constraints. Comput. Ind. Eng. 2016, 94, 230–244.
Abou Kasm, O.; Diabat, A.; Cheng, T.C.E. The Integrated Berth Allocation, Quay Crane Assignment and Scheduling Problem: Mathematical Formulations and a Case Study. Ann. Oper. Res. 2020, 291, 435–461.
Kizilay, D.; Van Hentenryck, P.; Eliiyi, D.T. Constraint Programming Models for Integrated Container Terminal Operations. Eur. J. Oper. Res. 2020, 286, 945–962.
Malekahmadi, A.; Alinaghian, M.; Hejazi, S.R.; Saidipour, M.A.A. Integrated Continuous Berth Allocation and Quay Crane Assignment and Scheduling Problem with Time-Dependent Physical Constraints in Container Terminals. Comput. Ind. Eng. 2020, 147, 106672.
Skaf, A.; Lamrous, S.; Hammoudan, Z.; Manier, M.-A. Integrated Quay Crane and Yard Truck Scheduling Problem at Port of Tripoli-Lebanon. Comput. Ind. Eng. 2021, 159, 107448.
Nourmohammadzadeh, A.; Voß, S. A Robust Multiobjective Model for the Integrated Berth and Quay Crane Scheduling Problem at Seaside Container Terminals. Ann. Math. Artif. Intell. 2022, 90, 831–853.
Diniz, N.V.; Cunha, D.R.; de Santana Porte, M.; Oliveira, C.B.M.; de Freitas Fernandes, F. A Bibliometric Analysis of Sustainable Development Goals in the Maritime Industry and Port Sector. Reg. Stud. Mar. Sci. 2024, 69, 103319.
Roh, S.; Thai, V.V.; Jang, H.; Yeo, G.-T. The Best Practices of Port Sustainable Development: A Case Study in Korea. Marit. Policy Manag. 2023, 50, 254–280.
Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220.
Hossain, T.; Adams, M.; Walker, T.R. Role of Sustainability in Global Seaports. Ocean Coast. Manag. 2021, 202, 105435.
Zhou, Y.; Li, X.; Yuen, K.F. Sustainable Shipping: A Critical Review for a Unified Framework and Future Research Agenda. Mar. Policy 2023, 148, 105478.
León-Mateos, F.; Sartal, A.; López-Manuel, L.; Quintas, M.A. Adapting Our Sea Ports to the Challenges of Climate Change: Development and Validation of a Port Resilience Index. Mar. Policy 2021, 130, 104573.
Casaca, A.C.P.; Loja, M.A.R. 2022 World of Shipping Portugal: An International Research Conference on Maritime Affairs. J. Shipp. Trade 2023, 8, 13.
Lu, Z.; Xi, L. A Proactive Approach for Simultaneous Berth and Quay Crane Scheduling Problem with Stochastic Arrival and Handling Time. Eur. J. Oper. Res. 2010, 207, 1327–1340.
Zhen, L. Tactical Berth Allocation under Uncertainty. Eur. J. Oper. Res. 2015, 247, 928–944.
Da Silva, F.J.G.; Gouveia, R.M. Cleaner Production; Springer: Cham, Switzerland, 2020.
Zhang, X., Liu, Y., & Wang, J. (2022). Innovations in Maritime Transportation: Enhancing Efficiency and Customer Satisfaction. *Journal of Maritime Logistics*, 8(1), 45-60.
Smith, A., & Johnson, R. (2023). Accessibility in Logistics: A Key to Customer Satisfaction. *International Journal of Logistics Management*, 34(2), 123-140.
Chen, L., & Li, H. (2023). Real-Time Tracking in Logistics: Impact on Customer Experience. *Logistics Research*, 15(3), 78-92.
Deloitte. (2022). The Importance of Responsive Customer Service in Logistics.
McKinsey. (2022). The Role of Mobile Applications in Modern Logistics.
Kumar, R., & Singh, P. (2023). Collaborative Innovations in the Logistics Sector. *Journal of Supply Chain Management*, 12(4), 234-250.
Wang, J., Zhang, Y., & Liu, X. (2022). Strategic Location Planning for Logistics Companies. *Transportation Science*, 56(1), 12-28.
Lee, S., & Park, M. (2023). User Experience in Digital Logistics Platforms. *Journal of Business Research*, 145, 567-580.
PwC. (2022). Customer Education in Logistics: A Pathway to Satisfaction.
Garcia, T., & Martinez, R. (2023). Information Transparency in Logistics Services. *International Journal of Operations & Production Management*, 43(2), 99-115.
World Bank. (2022). Multimodal Transport Integration: Benefits and Challenges.
Creswell, J. W., & Poth, C. N. (2018). *Qualitative Inquiry and Research Design: Choosing Among Five Approaches*. Sage Publications.
Sekaran, U., & Bougie, R. (2016). *Research Methods for Business: A Skill-Building Approach*. John Wiley & Sons.
Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). *Multivariate Data Analysis*. Pearson.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agung Kwartama, Samiyono

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.